Ketakhinggaan (Infinity) dalam Matematika

Matematikawan seperti Gauss percaya bahwa tidak ada notasi lain yang lebih presisi untuk menyatakan ketakhinggaan (infinity) dalam matematika. Demikian pula pandangan ahli filsafat empiris seperti Hobbes, Locke, dan Hume. Dalam matematika sendiri muncul pandangan ‘anti-infinity’ yang terutama didukung oleh Leopold Kronecker..

Pada tahun 1884, Georg Cantor (1845-1918) menunjukkan bukti matematika dan teori yang lengkap mengenai ketakhinggaan (infinity) dalam matematika, dan saat ini merupakan dasar bagi matematika modern.

Salah satu hasil yang ditunjukkan oleh Cantor adalah adannya hierarki yang tak hingga dari ketakhinggaan, masing-masing ketakhinggaannya lebih besar dari ketakhinggaan yang ada di bawahnya. Jika A adalah sebuah infinite set (yaitu set yang mengandung jumlah anggota yang tak hingga), dan P(A) adalah set dari tiap-tiap subset dari A, maka A lebih kecil dari P(A). Demikian pula P(A) < P(P(A). jadi diperoleh hierarki tak hingga dari infinite set, masing-masing lebih besar ketak hinggaannya dari sebelumnya.

A < P(A) < P(P(A)) < P(P(P(A))) < …

Namun, di area seperti matematika aplikasi (applied math) dan engineering, konsep ketakhinggaan untuk hierarki ketakhinggan tampaknya tidak terlalu banyak diperhatikan penggunaannya sampai detail dan presisi.

Di area lain seperti Set Theory, tentu saja cardinality dari sebuah set adalah segalanya, dan bahkan penggunaannya sangat penting dalam topology dan analysis.

One thought on “Ketakhinggaan (Infinity) dalam Matematika

  1. Pingback: On Continuum Hypothesis « matematika-ku

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s