Parametric breather surfaces are known in one-to-one correspondence with the solutions of a certain non-linear wave-equation, i.e., the so-called Sine-Gordon Equation. It turns out, solutions to this equation correspond to unique pseudospherical surfaces, namely soliton. Breather surface corresponds to a time-periodic 2-soliton solution.
Parametric breather surface has the following parametric equations :
Where ,
controls how far the tip goes, and
controls the girth.
When ,
, and
:
With orthographic projection :
About Pseudospherical Surfaces :
Surface in having constant Gaussian curvature
are usually called pseudospherical surfaces.
If is a surface with Gaussian curvature
then it is known that there exists a local asymptotic coordinate system
on
such that the first and second fundamental forms are:
, and
,
where is the angle between asymptotic lines (the x-curves and t-curves). The Gauss-Codazzi equations for
in these coordinates become a single equation, the sine-Gordon equation (SGE) :
The SGE is one of the model soliton equations.
References and Readings :
- Chuu-Lian Terng. 2004. Lecture notes on curves and surfaces in
, available here.
- Chuu-Lian Terng. 1990s. About Pseudospherical Surfaces, available here.
- Richard S Palais. 2003. A Modern Course on Curves and Surfaces, available here.
About 3D-XplorMath :
3D-XplorMath is a Mathematical Visualization program. The older original version, written in Pascal, runs only on Macintosh computers, but there is also a newer cross-platform Java version, called 3D-XplorMath-J which is written in the Java programming language; to use it, you must have Java 5.0 or higher installed on your computer.
You have posted fascinating points ! ps nice blog .
Thanks!